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Minimal surfaces in R?

critical point for the area in any
deformation with compact

support
S

So
d(area(St))

=0
dt =0
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Minimal surfaces in R?

critical point for the area in any
deformation with compact

support Harmonic map

D— C*=R*

&/ 2 (e(2) + f(2), 9(2) + h(2))

e, f, g, h holomorphic

d(area(St)) o = 0
a0
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Minimal surfaces in R?

critical point for the area in any
deformation with compact

support Harmonic map

D— C*=R*

&/ 2 (e(2) + f(2), 9(2) + h(2))

e, f, g, h holomorphic

Conformality condition

d(arf;cz(&)) o = 0 ef +gh =0
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Minimal surfaces in R?

critical point for the area in any
deformation with compact

support Harmonic map

D— C*=R*

&/ 2 (e(2) + f(2), 9(2) + h(2))

e, f, g, h holomorphic

Conformality condition

d(area(Sy))

2o =0 Of + gl =0

EXEMPLE. Complex curves in C? = R*.
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Ribbon knots

K in R? (or S?) is ribbon if K
bounds a disk with

ribbon singularities

0
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Ribbon knots

TH (Hass, 1983): a knot in S? is
ribbon iff it bounds an
embedded minimal disk A in B*

K in R? (or S?) is ribbon if K
bounds a disk with

REMARK. Harmonic
parametrization ==> the

ribbon singularities restriction of d(0,.) to A has no
local maxima.
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Torus knots

K (3,7) torus knot

In R3, the parameter goes
N times around a circle C'
in a vertical plane while C'
rotates p times around

Oz.
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Torus knots

K (3,7) torus knot

In R3, the parameter goes
N times around a circle C'
in a vertical plane while C'
rotates p times around

Oz. In S?,
K(N,p):St — §?

. 1 1

19 Nz@ pif

e ( —=€ )
\/_ \/_

inside the Clifford torus
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Torus knots
Algebraic curves

Cnp= {(21, 22) 21 = 2 }

K (3,7) torus knot

In R3, the parameter goes
N times around a circle C'
in a vertical plane while C'
rotates p times around

Oz. In S?,
K(N,p):St — §?

. 1 1

19 Nz@ pif

e ( —=€ )
\/_ \/_

inside the Clifford torus
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Torus knots
Algebraic curves

Cnp= {(21, 22) 21 = 2 }

parametrized near (0,0) by
K (3,7) torus knot

In R3, the parameter goes zZ = (ZN, 2P)
N times around a circle C'

in a vertical plane while C'

rotates p times around

Oz. In S?,

K(N,p):S' —§*

. 1 1

19 Nz@ pif

e ( —=€ )
\/_ \/_

inside the Clifford torus
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Torus knots
Algebraic curves

Cnp= {(21, 22) 21 = 2 }

parametrized near (0,0) by
K (3,7) torus knot

In R3, the parameter goes zZ = (ZN, 2P)

N times around a circle C'

in a vertical plane while C'

rotates p times around ex: cusp z{ = 2 (drawn in R?!)
Oz. In S?,

K(N,p):St — §? N,p) = Cn,,NS?

e = (— L eNif 1 —eP?y NB. (0,0) is a branch point; Cy, is not

\/_ V2 a smooth near (0,0) but it has a
inside the Clifford torus  tangent plane
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Minimal knots

F:D — R* minimal




Minimal knots

F:D — R* minimal
If 0 is a critical point of F, it is a branch point (lowest order term
is conformal): in a neighbourhood of F,

F(z) = (=" +o(z"),0(z"))
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Minimal knots

F:D — R* minimal
If 0 is a critical point of F, it is a branch point (lowest order term
is conformal): in a neighbourhood of F,

F(z) = (=" +o(z"),0(z"))

Assume that F is injective in a neighbourhood of 0 (i.e. F(D) has
no codimension 1 singularities). For a small € > 0, set

K.=FD)NS?
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Minimal knots

F:D — R* minimal
If 0 is a critical point of F, it is a branch point (lowest order term
is conformal): in a neighbourhood of F,

F(z) = (=" +o(z"),0(z"))

Assume that F' is injective in a neighbourhood of 0 (i.e. F(D) has
no codimension 1 singularities). For a small € > 0, set

K.=FD)NS?

For e small enough, the type of the knot does not depend on e.
There is a homeomorphism

C’one(Sg’,Ke) = (B4,F(D))

WHO ARE THE KNOTS OF BRANCH POINTS OF MINIMAL
DISKS??? CAN THEY BE ALL THE KNOTS?27777
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Constructing the knot

RECALL —— > Coordinate functions of a minimal surfaces are
harmonic. So

Each of the 4 components of the minimal disk is a series in

z =re' and z = re”®. We truncate each component by larger
and larger powers of 7: as soon as we get something injective, we
can stop and we have the knot type.
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Constructing the knot

RECALL —— > Coordinate functions of a minimal surfaces are
harmonic. So

Each of the 4 components of the minimal disk is a series in

z =re' and z = re”®. We truncate each component by larger
and larger powers of 7: as soon as we get something injective, we
can stop and we have the knot type.

SIMPLEST CASE. We can stop at the lowest order term of each
of the 4 components.

(r™ cos(NO), r" sin(N@), 1P cos(pf + ¢), r?sin(qh))
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Constructing the knot

RECALL —— > Coordinate functions of a minimal surfaces are
harmonic. So

Each of the 4 components of the minimal disk is a series in

z =re' and z = re”®. We truncate each component by larger
and larger powers of 7: as soon as we get something injective, we
can stop and we have the knot type.

SIMPLEST CASE. We can stop at the lowest order term of each
of the 4 components.

(r™ cos(NO), r" sin(N@), 1P cos(pf + ¢), r?sin(qh))

e p=gq, (N,q) torus knot.
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Constructing the knot

RECALL —— > Coordinate functions of a minimal surfaces are
harmonic. So

Each of the 4 components of the minimal disk is a series in

z =re' and z = re”®. We truncate each component by larger
and larger powers of 7: as soon as we get something injective, we
can stop and we have the knot type.

SIMPLEST CASE. We can stop at the lowest order term of each
of the 4 components.

(r™ cos(NO), r" sin(N@), 1P cos(pf + ¢), r?sin(qh))

e p=gq, (N,q) torus knot.
@ p # ¢ Lissajous toric knot
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Lissajous toric knots

Lissajous curve C,, 4 in a vertical plane

t + (sin qt, cos(pf + ¢))

Type I: (sin(2t), cos(3t)), 0 < ¢ < 27

http://mathserver.neu.edu
/ bridger /U170 /Lissajous/Lissajous.pdf
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Lissajous toric knots

Lissajous curve C,, 4 in a vertical plane

t + (sin qt, cos(pf + ¢))

A particle goes
e along C, 4 while

o Cypo is rotated N times
> v ' around the axis Oz

Type L: (sin(2t),cos(3t)), 0 < ¢ < 27

http://mathserver.neu.edu
/ bridger /U170 /Lissajous/Lissajous.pdf
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Lissajous toric knots

Lissajous curve C,, 4 in a vertical plane
t — (sin gt, cos(pf + ¢))
A particle goes

e along C,, , while

@ CUypo is rotated N times

’ " ‘ around the axis Oz
' Proposition
Type I (sin(21),cos(31)). 0 < ¢ < 2 Up to mirror symmetry the knot

http://mathserver.neu.edu type does not depend on the
/ bridger/U170/Lissajous/Lissajous.pdf phase ¢.
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Billiard knots in a square solid torus

Christoph Lamm (PhD in the late 1990’s, this chapter on arxiv in
2012): billiard knots in a square solid torus

V =10,17°/(0,y,2) = (1,y,2)
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Braids

5

N points connected by N
strands.

0
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Braids

5

N points connected by N
strands. Glue the extremities
together ==> get a link
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Braids

,-—-

5

N points connected by N
strands. Glue the extremities
together ==> get a link
sign of the crossing points

AN /
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Braids

+ g
/
/ / —
Form a group By generated by
01y -+, ON—1

o; switches the i-th and ¢ + 1-th

N points connected by N strand with relations
strands. Glue the extremities
together ==> get a link
sign of the crossing points

AN /

|Z —j| >2==> 0,0 = 0;0;

0;0i4+10; = 04410041
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Braids

+ g
/
/ / —
Form a group By generated by
01y -+, ON—1

o; switches the i-th and ¢ + 1-th

N points connected by N strand with relations
strands. Glue the extremities
together ==> get a link
sign of the crossing points

AN /

|Z —j| >2==> 0,0 = 0;0;

0;0i4+10; = 04410041

-1 _2
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Braid of the (IV, q) torus knot

NN\ N\ N\ Nedges
SN NN\

/ / /

q
H 02i+1 H 02i>

1<2i+1<N -1 2<2i<N-1
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The braidBy, g,

We work with the knot in the 3D-cylinder St — S x R?
e’ — (e sin(q0), cos(pf + ¢))

0
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The braidBy, g,
We work with the knot in the 3D-cylinder St — S x R?

e (6“\797 sin(gf), cos(pd + ¢))

We derive the braid By, ,, which represents the knot
The first 2 coordinates are the same as for torus knots

SN

i

N=3,q=7,p=5
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Periodic case

BN.iq.dp = By 4
==> we assume:
e the numbers p and ¢ are mutually prime
@ ¢ is odd
. Note: if d > 1, the knot K(N,q,p) is periodic.

0
na Ville (Uni de Tours, FrKnots in S° and minimal surfaces in I



The braid B5‘6q22

\

rina Ville (Universit

/ \ / 0\
/V%/
OO
MO
\_/\V \_/\
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Theorem (stated by Lamm, Soret-V. 2016)
If p and ¢ are mutually prime, then K (N, g, p) is ribbon
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Theorem (stated by Lamm, Soret-V. 2016)
If p and ¢ are mutually prime, then K (N, g, p) is ribbon

WELL-KNOWN
FACT: If a knot in
R? is symmetric
w.r.t. a plane P,
then it is ribbon
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Theorem (stated by Lamm, Soret-V. 2016)
If p and ¢ are mutually prime, then K (N, g, p) is ribbon J

WELL-KNOWN

FACT: If a knot in

R? is symmetric Q
w.r.t. a plane P,

then it is ribbon

-

N — 1 half-twist tangles connecting @ and Q~!; replace them by
N — 1 tangles and get a N-component link L which is symmetric
w.r.t. a plane and bounds N ribbon disks which intersect in

ribbon singularities.
Institut Henri Poincaré, June 22/(:1?3,22(
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Compare and contrast with torus knots

Proposition (Soret-V., 2016)
For N, ¢, mutually prime, K(N,q,q+ N) is trivial.
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Compare and contrast with torus knots

Proposition (Soret-V., 2016)
For N, ¢, mutually prime, K (N, q,q + N) is trivial.

g4(K) = smallest genus of a surface bounded by K in B*.
Theorem (Kronheimer-Mrowka)
The 4-genus of the (N, d)-torus knot K (N,d) is

(N —=1)(d-1)
%

94(K(N7 d)) =

Institut Henri Poincaré, June 22/th, 2(
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Compare and contrast with torus knots

Proposition (Soret-V., 2016)
For N, ¢, mutually prime, K (N, q,q + N) is trivial.

g4(K) = smallest genus of a surface bounded by K in B*.

Theorem (Kronheimer-Mrowka)
The 4-genus of the (N, d)-torus knot K (N,d) is

(N —-1)(d—-1)

94(K(N7 d)) = 2

Proposition (Soret-V., 2016)
Let d = ged(p, q). Then

(N—-1)(d-1)

g1(K(N,q,p)) <
N

Marina Ville (Université de Tours, FrKnots in S° and minimal surfaces in I ’ / 32




When we need to go to the next order

Suppose the knot given by the lowest order term in each
component is singular.
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When we need to go to the next order

Suppose the knot given by the lowest order term in each
component is singular.

First situation: some of the N strands are fused
z s (25, 219)

Go 3 times along the (2,5) torus knot which is a 2-strand braid.
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When we need to go to the next order

Suppose the knot given by the lowest order term in each
component is singular.

First situation: some of the N strands are fused
z s (25, 219)

Go 3 times along the (2,5) torus knot which is a 2-strand braid.
If we add a term,

z e (25,217 4 217)
all 6 strands are distinct.
Cable knot: a (3,17) torus knot around the (2,5) torus knot
inside its tubular neighbourhood.

-y
SO
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When we need to go to the next order
Suppose the knot given by the lowest order term in each
component is singular.

First situation: some of the N strands are fused
z s (25, 219)

Go 3 times along the (2,5) torus knot which is a 2-strand braid.
If we add a term,

z e (25,217 4 217)
all 6 strands are distinct.
Cable knot: a (3,17) torus knot around the (2,5) torus knot
inside its tubular neighbourhood.

o

(/_j Similarly, we can cable Lissajous toric knots.
/;/ = PROBLEM: when does the cable come from a
&/J\\ minimal disk?
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Second situation: critical phases

Note: unlike the cabling, this has no counterpart for algebraic
knots. Let (N,q) = (N,p) = 1.

(eMN® sin(gh), cos(pd + ¢)) with singular crossing points

Q o @t 6] Q a @ 8

(rNelN® risin(qh), rP cos(pl + ¢) + r®cos(al + 3))  a>p
Regular points are unchanged; singular parts are replaced by
aN,ga A0d By ga-
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Second situation: critical phases

Note: unlike the cabling, this has no counterpart for algebraic
knots. Let (N,q) = (N,p) = 1.

(eMN® sin(gh), cos(pd + ¢)) with singular crossing points

Q « @t 6] Q a @ 8

(rNelN® risin(qh), rP cos(pl + ¢) + r®cos(al + 3))  a>p

Regular points are unchanged; singular parts are replaced by

anga a0d By qq. We get a minimal knot. Iterate?
Institut Henri Poincaré, June 22;113,22(
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A problem: when we want minimal disks

(2N, Im(29), Re(2Pe'))

n
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A problem: when we want minimal disks

(2N, Im(29), Re(2Pe'))

minimal?
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A problem: when we want minimal disks

(2N, Im(29), Re(2Pe'))

minimal?

(N + h(2), Im(27), Re(zPe™?))

0
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A problem: when we want minimal disks
(2", Im(27), Re(z"¢'?))
minimal? Let w = 2N 4 h(2)
w=z+o(]z])

(N + h(2), Im(27), Re(zPe™?))

0
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A problem: when we want minimal disks
(2", Im(27), Re(z"¢'?))
minimal? Let w™ = 2NV 4+ h(z)
w=z+o(]z])

(N + h(2), Im(27), Re(2Pe™?))
= (W, Im(w?) + o(|w|?), Re(w’e'®) + o |w|P))

Institut Henri Poincaré, June 22/th, 2(
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A problem: when we want minimal disks
(2N, Im(27), Re(2Pe™))
minimal? Let w™ = 2NV 4+ h(z)
w =z + o(|z|)

(2N 4 h(2), Im(27), Re(2Pe'))
= (W, Im(w?) + o(|w|?), Re(w’e'®) + o |w|P))

CONCLUSION: if we stop at the first order terms, the term h(z)
does not matter; it may matter if we go to a higher order.
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Conclusion

CONJECTURE: not every knot is isotopic to a minimal knot.
Reasons: the cosines which make up the knots have different
order of magnitude, according to the rank of the term where they
appear.
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Conclusion

CONJECTURE: not every knot is isotopic to a minimal knot.
Reasons: the cosines which make up the knots have different
order of magnitude, according to the rank of the term where they
appear. By contrast,

Institut Henri Poincaré, June 22/th, 2(
32

Marina Ville (Université de Tours, FrKnots in S° and minimal surfaces in I



Conclusion

CONJECTURE: not every knot is isotopic to a minimal knot.
Reasons: the cosines which make up the knots have different
order of magnitude, according to the rank of the term where they
appear. By contrast,

Theorem (Soret-V., 2015)

Let K be a knot. There exist ny, ng, n3, ny integers, ¢, 1, € rational
numbers such that K is isotopic to the knot given in R? by

e = = cos(2mnyt)
o y = cos (2mnat + ¢) + €cos(2mnst + 1)
o z = cos(2mngt + 1)

Institut Henri Poincaré, June 22/th, 2(
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Appendix: software
Feed the data of the braid into KnotPlot which computes the
Alexander and Jones polynomial of the knot. If the crossing
number is not too large, identify it in the Rohlfsen or
Hoste-Thistlethwaite tables.
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Appendix: software
Feed the data of the braid into KnotPlot which computes the
Alexander and Jones polynomial of the knot. If the crossing
number is not too large, identify it in the Rohlfsen or
Hoste-Thistlethwaite tables.— — —— > exemple of a non fibered
prime minimal knot (Soret-V. 2011), 946 representing K (4,13, 5)

0
7

7
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YOU!




