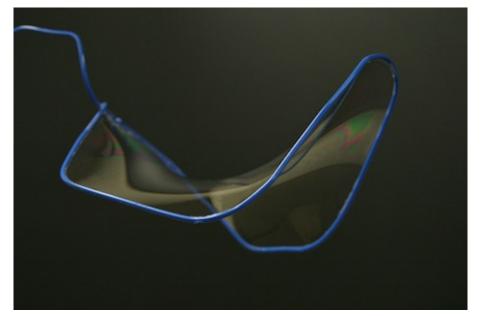
Knots in \mathbb{S}^3 and minimal surfaces in \mathbb{B}^4 joint work with Marc Soret

Marina Ville

Université de Tours, France

Institut Henri Poincaré, June 22th, 2018



Paul Laurain, Image des maths

critical point for the area in any deformation with compact support

$$\frac{d(area(S_t))}{dt}|_{t=0} = 0$$

critical point for the area in any deformation with compact support

$$\frac{d(area(S_t))}{dt}|_{t=0} = 0$$

Harmonic map

$$\mathbb{D} \longrightarrow \mathbb{C}^2 = \mathbb{R}^4$$

$$z \mapsto (e(z) + \bar{f}(z), g(z) + \bar{h}(z))$$

$$e, f, g, h \text{ holomorphic}$$

critical point for the area in any deformation with compact support

$$\frac{d(area(S_t))}{dt}|_{t=0} = 0$$

Harmonic map

$$\mathbb{D} \longrightarrow \mathbb{C}^2 = \mathbb{R}^4$$

$$z\mapsto (e(z)+\bar{f}(z),g(z)+\bar{h}(z))$$

$$e,f,g,h \text{ holomorphic}$$

Conformality condition

$$e'f' + g'h' = 0$$

critical point for the area in any deformation with compact support

$$\frac{d(area(S_t))}{dt}|_{t=0} = 0$$

Harmonic map

$$\mathbb{D} \longrightarrow \mathbb{C}^2 = \mathbb{R}^4$$

$$z \mapsto (e(z) + \bar{f}(z), g(z) + \bar{h}(z))$$

$$e, f, g, h \text{ holomorphic}$$

Conformality condition

$$e'f' + g'h' = 0$$

EXEMPLE. Complex curves in $\mathbb{C}^2 = \mathbb{R}^4$.

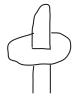
Ribbon knots

K in \mathbb{R}^3 (or \mathbb{S}^3) is ribbon if Kbounds a disk with

ribbon singularities

Ribbon knots

K in \mathbb{R}^3 (or \mathbb{S}^3) is ribbon if Kbounds a disk with



ribbon singularities

TH (Hass, 1983): a knot in \mathbb{S}^3 is ribbon iff it bounds an embedded minimal disk Δ in \mathbb{R}^4

REMARK. Harmonic parametrization ==> the restriction of d(0,.) to Δ has no local maxima.

Torus knots

K(3,7) torus knot In \mathbb{R}^3 , the parameter goes N times around a circle C in a vertical plane while Crotates p times around Oz.

Torus knots

K(3,7) torus knot In \mathbb{R}^3 , the parameter goes N times around a circle C in a vertical plane while C rotates p times around Oz. In \mathbb{S}^3 ,

$$K(N,p): \mathbb{S}^1 \longrightarrow \mathbb{S}^3$$

$$e^{i\theta} \mapsto (\frac{1}{\sqrt{2}}e^{Ni\theta}, \frac{1}{\sqrt{2}}e^{pi\theta})$$

inside the Clifford torus

Torus knots Algebraic curves

$$C_{N,p} = \{(z_1, z_2) \ z_1^p = z_2^N\}$$

K(3,7) torus knot In \mathbb{R}^3 , the parameter goes N times around a circle C in a vertical plane while C rotates p times around Oz. In \mathbb{S}^3 ,

$$K(N,p): \mathbb{S}^1 \longrightarrow \mathbb{S}^3$$

$$e^{i\theta} \mapsto (\frac{1}{\sqrt{2}}e^{Ni\theta}, \frac{1}{\sqrt{2}}e^{pi\theta})$$

inside the Clifford torus

K(3,7) torus knot In \mathbb{R}^3 , the parameter goes N times around a circle C in a vertical plane while C rotates p times around Oz. In \mathbb{S}^3 ,

$$K(N,p): \mathbb{S}^1 \longrightarrow \mathbb{S}^3$$

$$e^{i\theta} \mapsto (\frac{1}{\sqrt{2}}e^{Ni\theta}, \frac{1}{\sqrt{2}}e^{pi\theta})$$

inside the Clifford torus

Torus knots Algebraic curves

$$C_{N,p} = \{(z_1, z_2) \ z_1^p = z_2^N\}$$

parametrized near (0,0) by

$$z \mapsto (z^N, z^p)$$

K(3,7) torus knot In \mathbb{R}^3 , the parameter goes N times around a circle Cin a vertical plane while C rotates p times around Oz. In \mathbb{S}^3 ,

$$K(N,p):\mathbb{S}^1 \longrightarrow \mathbb{S}^3$$

$$e^{i\theta} \mapsto (\frac{1}{\sqrt{2}}e^{Ni\theta}, \frac{1}{\sqrt{2}}e^{pi\theta})$$

inside the Clifford torus

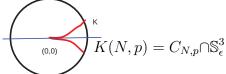
Torus knots Algebraic curves

$$C_{N,p} = \{(z_1, z_2) \ z_1^p = z_2^N\}$$

parametrized near (0,0) by

$$z \mapsto (z^N, z^p)$$

ex: cusp $z_1^3 = z_2^2$ (drawn in \mathbb{R}^2 !)



NB. (0,0) is a branch point; $C_{N,p}$ is not a smooth near (0,0) but it has a Institut Henri Poincaré, June 22th, 20 tangent plane

 $F: \mathbb{D} \longrightarrow \mathbb{R}^4$ minimal

 $F: \mathbb{D} \longrightarrow \mathbb{R}^4$ minimal

If 0 is a critical point of F, it is a branch point (lowest order term is conformal): in a neighbourhood of F,

$$F(z) = (z^N + o(z^N), o(z^N))$$

$$F: \mathbb{D} \longrightarrow \mathbb{R}^4$$
 minimal

If 0 is a critical point of F, it is a branch point (lowest order term is conformal): in a neighbourhood of F,

$$F(z) = (z^N + o(z^N), o(z^N))$$

Assume that F is injective in a neighbourhood of 0 (i.e. $F(\mathbb{D})$ has no codimension 1 singularities). For a small $\epsilon > 0$, set

$$K_{\epsilon} = F(\mathbb{D}) \cap \mathbb{S}^3_{\epsilon}$$

$$F: \mathbb{D} \longrightarrow \mathbb{R}^4$$
 minimal

If 0 is a critical point of F, it is a branch point (lowest order term is conformal): in a neighbourhood of F,

$$F(z) = (z^N + o(z^N), o(z^N))$$

Assume that F is injective in a neighbourhood of 0 (i.e. $F(\mathbb{D})$ has no codimension 1 singularities). For a small $\epsilon > 0$, set

$$K_{\epsilon} = F(\mathbb{D}) \cap \mathbb{S}^3_{\epsilon}$$

For ϵ small enough, the type of the knot does not depend on ϵ . There is a homeomorphism

$$Cone(\mathbb{S}^3_{\epsilon}, K_{\epsilon}) \cong (\mathbb{B}^4, F(\mathbb{D}))$$

WHO ARE THE KNOTS OF BRANCH POINTS OF MINIMAL DISKS??? CAN THEY BE ALL THE KNOTS??????

RECALL --> Coordinate functions of a minimal surfaces are harmonic, So

Each of the 4 components of the minimal disk is a series in $z = re^{i\theta}$ and $\bar{z} = re^{-i\theta}$. We truncate each component by larger and larger powers of r: as soon as we get something injective, we can stop and we have the knot type.

RECALL --> Coordinate functions of a minimal surfaces are harmonic, So

Each of the 4 components of the minimal disk is a series in $z = re^{i\theta}$ and $\bar{z} = re^{-i\theta}$. We truncate each component by larger and larger powers of r: as soon as we get something injective, we can stop and we have the knot type.

SIMPLEST CASE. We can stop at the lowest order term of each of the 4 components.

$$(r^N \cos(N\theta), r^N \sin(N\theta), r^p \cos(p\theta + \phi), r^q \sin(q\theta))$$

RECALL --> Coordinate functions of a minimal surfaces are harmonic. So

Each of the 4 components of the minimal disk is a series in $z = re^{i\theta}$ and $\bar{z} = re^{-i\theta}$. We truncate each component by larger and larger powers of r: as soon as we get something injective, we can stop and we have the knot type.

SIMPLEST CASE. We can stop at the lowest order term of each of the 4 components.

$$(r^N \cos(N\theta), r^N \sin(N\theta), r^p \cos(p\theta + \phi), r^q \sin(q\theta))$$

• p = q, (N, q) torus knot.

RECALL --> Coordinate functions of a minimal surfaces are harmonic, So

Each of the 4 components of the minimal disk is a series in $z = re^{i\theta}$ and $\bar{z} = re^{-i\theta}$. We truncate each component by larger and larger powers of r: as soon as we get something injective, we can stop and we have the knot type.

SIMPLEST CASE. We can stop at the lowest order term of each of the 4 components.

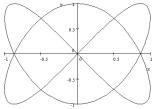
$$(r^N \cos(N\theta), r^N \sin(N\theta), r^p \cos(p\theta + \phi), r^q \sin(q\theta))$$

- p = q, (N, q) torus knot.
- $p \neq q$ Lissajous toric knot

Lissajous toric knots

Lissajous curve $C_{q,p,\phi}$ in a vertical plane

$$t \mapsto (\sin qt, \cos(p\theta + \phi))$$



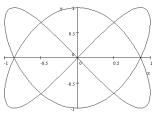
Type I: $(\sin(2t), \cos(3t)), 0 \le t \le 2\pi$

http://mathserver.neu.edu / bridger/U170/Lissajous/Lissajous.pdf

Lissajous toric knots

Lissajous curve $C_{q,p,\phi}$ in a vertical plane

$$t \mapsto (\sin qt, \cos(p\theta + \phi))$$



Type I: $(\sin(2t), \cos(3t)), 0 \le t \le 2\pi$

http://mathserver.neu.edu / bridger/U170/Lissajous/Lissajous.pdf

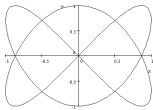
A particle goes

- along $C_{q,p,\phi}$ while
- $C_{q,p,\phi}$ is rotated N times around the axis Oz

Lissajous toric knots

Lissajous curve $C_{q,p,\phi}$ in a vertical plane

$$t \mapsto (\sin qt, \cos(p\theta + \phi))$$



Type I: $(\sin(2t), \cos(3t)), 0 \le t \le 2\pi$

http://mathserver.neu.edu / bridger/U170/Lissajous/Lissajous.pdf phase ϕ .

A particle goes

- along $C_{q,p,\phi}$ while
- $C_{q,p,\phi}$ is rotated N times around the axis Oz

Proposition

Up to mirror symmetry the knot type does not depend on the

Billiard knots in a square solid torus

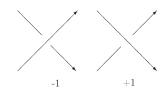
Christoph Lamm (PhD in the late 1990's, this chapter on arxiv in 2012): billiard knots in a square solid torus

$$V = [0, 1]^3 / (0, y, z) \cong (1, y, z)$$

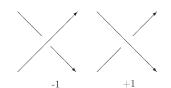
N points connected by Nstrands.

N points connected by Nstrands. Glue the extremities together ==> get a link

N points connected by Nstrands. Glue the extremities together ==> get a linksign of the crossing points



N points connected by Nstrands. Glue the extremities together ==> get a linksign of the crossing points

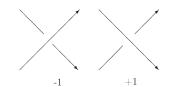


Form a group B_N generated by $\sigma_1, ..., \sigma_{N-1}$ σ_i switches the *i*-th and i+1-th strand with relations

$$|i - j| \ge 2 ==> \sigma_i \sigma_j = \sigma_j \sigma_i$$

 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

N points connected by Nstrands. Glue the extremities together ==> get a linksign of the crossing points

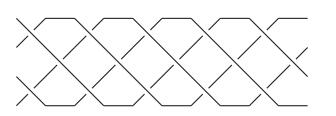


Form a group B_N generated by $\sigma_1, ..., \sigma_{N-1}$ σ_i switches the *i*-th and i+1-th strand with relations

$$|i - j| \ge 2 = > \sigma_i \sigma_j = \sigma_j \sigma_i$$

 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$
 $\sigma_1 \sigma_2 \sigma_1^{-1} \sigma_2^2$

Braid of the (N, q) torus knot



$$N = 4, q = 5$$

$$\left(\prod_{1\leq 2i+1\leq N-1}\sigma_{2i+1}\prod_{2\leq 2i\leq N-1}\sigma_{2i}\right)^q$$

The braid $B_{N,q,p}$

We work with the knot in the 3D-cylinder $\mathbb{S}^1 \longrightarrow \mathbb{S}^1 \times \mathbb{R}^2$

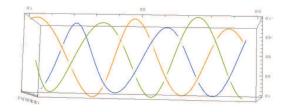
$$e^{i\theta} \mapsto (e^{iN\theta}, \sin(q\theta), \cos(p\theta + \phi))$$

The braid $B_{N,q,p}$

We work with the knot in the 3D-cylinder $\mathbb{S}^1 \longrightarrow \mathbb{S}^1 \times \mathbb{R}^2$

$$e^{i\theta} \mapsto \left(e^{iN\theta}, \sin(q\theta), \cos(p\theta + \phi)\right)$$

We derive the braid $B_{N,q,p,\phi}$ which represents the knot The first 2 coordinates are the same as for torus knots



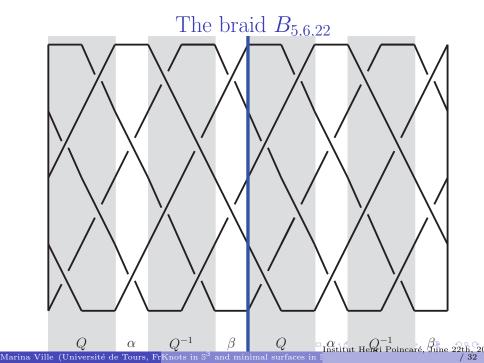
$$N = 3, q = 7, p = 5$$

Periodic case

$$B_{N,dq,dp} = B_{N,q,p}^d$$

==> we assume:

- \bullet the numbers p and q are mutually prime
- \bullet q is odd
- . Note: if d > 1, the knot K(N, q, p) is periodic.



Theorem (stated by Lamm, Soret-V. 2016)

If p and q are mutually prime, then K(N,q,p) is ribbon

Theorem (stated by Lamm, Soret-V. 2016)

If p and q are mutually prime, then K(N,q,p) is ribbon

WELL-KNOWN

FACT: If a knot in \mathbb{R}^3 is symmetric w.r.t. a plane P,

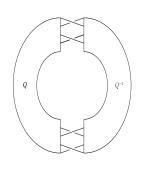
then it is ribbon

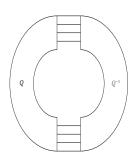
Theorem (stated by Lamm, Soret-V. 2016)

If p and q are mutually prime, then K(N,q,p) is ribbon

WELL-KNOWN

FACT: If a knot in \mathbb{R}^3 is symmetric w.r.t. a plane P, then it is ribbon





N-1 half-twist tangles connecting Q and Q^{-1} ; replace them by N-1 tangles and get a N-component link L which is symmetric w.r.t. a plane and bounds N ribbon disks which intersect in ribbon singularities.

Compare and contrast with torus knots

Proposition (Soret-V., 2016)

For N, q, mutually prime, K(N, q, q + N) is trivial.

Compare and contrast with torus knots

Proposition (Soret-V., 2016)

For N, q, mutually prime, K(N, q, q + N) is trivial.

 $q_4(K)$ = smallest genus of a surface bounded by K in \mathbb{B}^4 .

Theorem (Kronheimer-Mrowka)

The 4-genus of the (N, d)-torus knot K(N, d) is

$$g_4(K(N,d)) = \frac{(N-1)(d-1)}{2}$$

Compare and contrast with torus knots

Proposition (Soret-V., 2016)

For N, q, mutually prime, K(N, q, q + N) is trivial.

 $q_4(K)$ = smallest genus of a surface bounded by K in \mathbb{B}^4 .

Theorem (Kronheimer-Mrowka)

The 4-genus of the (N, d)-torus knot K(N, d) is

$$g_4(K(N,d)) = \frac{(N-1)(d-1)}{2}$$

Proposition (Soret-V., 2016)

Let d = qcd(p, q). Then

$$g_4(K(N,q,p)) \le \frac{(N-1)(d-1)}{2}$$

Institut Henri Poincaré, June 22th, 20

Suppose the knot given by the lowest order term in each component is singular.

Suppose the knot given by the lowest order term in each component is singular.

First situation: some of the N strands are fused

$$z \mapsto (z^6, z^{15})$$

Go 3 times along the (2,5) torus knot which is a 2-strand braid.

Suppose the knot given by the lowest order term in each component is singular.

First situation: some of the N strands are fused

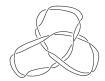
$$z \mapsto (z^6, z^{15})$$

Go 3 times along the (2,5) torus knot which is a 2-strand braid. If we add a term,

$$z \mapsto (z^6, z^{15} + z^{17})$$

all 6 strands are distinct.

Cable knot: a (3, 17) torus knot around the (2, 5) torus knot inside its tubular neighbourhood.



Suppose the knot given by the lowest order term in each component is singular.

First situation: some of the N strands are fused

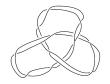
$$z \mapsto (z^6, z^{15})$$

Go 3 times along the (2,5) torus knot which is a 2-strand braid. If we add a term,

$$z \mapsto (z^6, z^{15} + z^{17})$$

all 6 strands are distinct.

Cable knot: a (3, 17) torus knot around the (2, 5) torus knot inside its tubular neighbourhood.

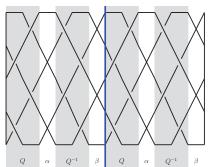


Similarly, we can cable Lissajous toric knots. PROBLEM: when does the cable come from a minimal disk?

Second situation: critical phases

Note: unlike the cabling, this has no counterpart for algebraic knots. Let (N, q) = (N, p) = 1.

 $(e^{Ni\theta},\sin(q\theta),\cos(p\theta+\phi))$ with singular crossing points



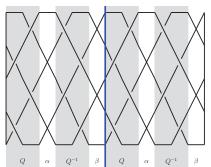
$$(r^N e^{Ni\theta}, r^q \sin(q\theta), r^p \cos(p\theta + \phi) + r^a \cos(a\theta + \beta))$$
 $a > p$

Regular points are unchanged; singular parts are replaced by $\alpha_{N,a,a}$ and $\beta_{N,a,a}$.

Second situation: critical phases

Note: unlike the cabling, this has no counterpart for algebraic knots. Let (N, q) = (N, p) = 1.

 $(e^{Ni\theta},\sin(q\theta),\cos(p\theta+\phi))$ with singular crossing points



$$(r^N e^{Ni\theta}, r^q \sin(q\theta), r^p \cos(p\theta + \phi) + r^a \cos(a\theta + \beta))$$
 $a > p$

Regular points are unchanged; singular parts are replaced by $\alpha_{N,q,a}$ and $\beta_{N,q,a}$. We get a minimal knot. Iterate?

$$(z^N, Im(z^q), Re(z^p e^{i\phi}))$$

$$(z^N, Im(z^q), Re(z^p e^{i\phi}))$$

$$(z^N, Im(z^q), Re(z^p e^{i\phi}))$$

$$(z^N + \overline{h}(z), Im(z^q), Re(z^p e^{i\phi}))$$

$$(z^N, Im(z^q), Re(z^p e^{i\phi}))$$

Let
$$w^N = z^N + \overline{h}(z)$$

 $w = z + o(|z|)$

$$(z^N + \overline{h}(z), Im(z^q), Re(z^p e^{i\phi}))$$

$$(z^N, Im(z^q), Re(z^p e^{i\phi}))$$

Let
$$w^N = z^N + \overline{h}(z)$$

 $w = z + o(|z|)$

$$(z^{N} + \overline{h}(z), Im(z^{q}), Re(z^{p}e^{i\phi}))$$

= $(w^{N}, Im(w^{q}) + o(|w|^{q}), Re(w^{p}e^{i\phi}) + o(|w|^{p}))$

$$(z^N, Im(z^q), Re(z^p e^{i\phi}))$$

minimal?

Let
$$w^N = z^N + \overline{h}(z)$$

 $w = z + o(|z|)$

$$(z^{N} + \overline{h}(z), Im(z^{q}), Re(z^{p}e^{i\phi}))$$

= $(w^{N}, Im(w^{q}) + o(|w|^{q}), Re(w^{p}e^{i\phi}) + o(|w|^{p}))$

CONCLUSION: if we stop at the first order terms, the term $\bar{h}(z)$ does not matter; it may matter if we go to a higher order.

Conclusion

CONJECTURE: not every knot is isotopic to a minimal knot. Reasons: the cosines which make up the knots have different order of magnitude, according to the rank of the term where they appear.

Conclusion

CONJECTURE: not every knot is isotopic to a minimal knot. Reasons: the cosines which make up the knots have different order of magnitude, according to the rank of the term where they appear. By contrast,

Conclusion

CONJECTURE: not every knot is isotopic to a minimal knot. Reasons: the cosines which make up the knots have different order of magnitude, according to the rank of the term where they appear. By contrast,

Theorem (Soret-V., 2015)

Let K be a knot. There exist n_1, n_2, n_3, n_4 integers, ϕ, ψ, ϵ rational numbers such that K is isotopic to the knot given in \mathbb{R}^3 by

- $x = \cos(2\pi n_1 t)$
- $y = \cos(2\pi n_2 t + \phi) + \epsilon \cos(2\pi n_3 t + \psi)$
- $z = \cos(2\pi n_4 t + \tau)$

Appendix: software

Feed the data of the braid into KnotPlot which computes the Alexander and Jones polynomial of the knot. If the crossing number is not too large, identify it in the Rohlfsen or Hoste-Thistlethwaite tables.

Appendix: software

Feed the data of the braid into KnotPlot which computes the Alexander and Jones polynomial of the knot. If the crossing number is not too large, identify it in the Rohlfsen or Hoste-Thistlethwaite tables. ----> exemple of a non fibered prime minimal knot (Soret-V. 2011), 9_{46} representing K(4, 13, 5)

